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a b s t r a c t

The advent of single-cell sequencing started a new era of transcriptomic and genomic research, advancing
our knowledge of the cellular heterogeneity and dynamics. Cell type annotation is a crucial step in ana-
lyzing single-cell RNA sequencing data, yet manual annotation is time-consuming and partially subjec-
tive. As an alternative, tools have been developed for automatic cell type identification. Different
strategies have emerged to ultimately associate gene expression profiles of single cells with a cell type
either by using curated marker gene databases, correlating reference expression data, or transferring
labels by supervised classification. In this review, we present an overview of the available tools and
the underlying approaches to perform automated cell type annotations on scRNA-seq data.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Individual cells represent the basic building blocks of tissues
and organisms [1]. In multicellular species, cells specialize to fulfill
highly specific functions. This specialization occurs as a result of
intrinsic and extrinsic cues, with spatial location and molecular
profiles strongly modulating cell fate and function [2,3]. In this
context, the advent of robust and accessible single-cell sequencing
technologies [4] has enormously advanced our capacity to resolve

and understand the molecular mechanisms regulating cell behav-
ior, including fate decisions, developmental transitions, and
responses to injury and disease. Single-cell RNA sequencing
(scRNA-seq), in particular, has revolutionized biological research,
and enables the categorization of cell types across multiple species,
tissues, and contexts.

From a biological perspective, classifying units into groups and
categories is essential for their study, and makes it possible to draw
parallels between analog units found either in different body com-
partments or in distinct species. However, while the human body is
estimated to contain on average ~ 100 trillion cells, the number of
distinct cell types remains unclear [5]. Moreover, to appropriately
classify cells into different types, a fundamental question must be
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answered: what is a cell ‘‘type”? Defining cell identity is not a triv-
ial endeavor, firstly because gene expression levels are not always
binary, but can vary gradually over a spectrum. Secondly, and more
important, transcriptional differences that would allow cells to be
separated into different categories might not possess any biological
relevance in terms of cellular function [6]. Considering that the
human genome consists of approximately 20,000–25,000 genes,
and that an average cell contains between 100,000 and 1,000,000
mRNA molecules [7], single-cell experiments require the use of
amplification reactions to define the molecular profile of individual
cells. Amplification, however, introduces technical variability,
which increases the level of molecular noise and imposes addi-
tional difficulties in discerning between truly relevant changes in
gene expression profiles and fluctuations in transcript levels inher-
ent to cells. The transcriptional changes that occur during the cell
cycle, for instance, remain challenging to isolate from simultane-
ous, albeit independent, cellular processes within the cell [8].

scRNA-seq is presently the dominant approach for defining cel-
lular states at the molecular level [9]. To date, over 19,000 studies
reporting the use of scRNA-seq in a variety of tissues, organisms,
and contexts have been listed in Pubmed (search of term ‘‘single
cell rna sequencing” on October 15th, 2020). Nonetheless, with
novel sequencing methods being constantly developed [4], data
standardization, curation, and integration have emerged as impor-
tant challenges to be overcome for the precise and accurate catego-
rization of cell types across species and developmental stages, as
well as in injury and disease [10]. For many purposes, ensuring that
a cell is significantly more similar to its in vivo counterpart than to
other cell types might be sufficient [11]. Within the field of cellular
engineering, profiling the transcriptional signatures of forward-
programmed hiPSCs or of 3D organoids by scRNA-seq serves as a
reliable quality-control measure by enabling the prompt and con-
fident assessment of the capacity of diverse engineering strategies
to drive cells into specific lineages [12–14]. For primary cells and
tissues, however, the interpretation of scRNA-seq data requires
caution and, when identifying novel cell types, validation by addi-
tional functional tests [15]. Starting from single-cell transcrip-
tomes, numerous pipelines have been developed for studying cell
heterogeneity [16,17]. Manual annotation of cell types is often
time-consuming and suffers from limited reproducibility. To over-
come these limitations, computational methods have recently
emerged for the automated annotation of cell clusters.

2. Automated cell type annotation of target scRNA-seq datasets

Analysis of scRNA-seq datasets generally starts with dimension-
ality reduction and clustering [16,17]. Clusters represent groups of
cells with relatively similar gene expression profiles. Hence, cells
clustering together are likely to possess the same identity,
although diverse cellular phenomena such as cell transitions might
not be fully captured in scRNA-seq datasets. Consequently, cells
might be assigned erroneous identities. Furthermore, the choice
of clustering methods and granularity [18] yields different cluster
numbers and compositions within the same dataset. Under-
clustering, in particular, can result in insufficient resolution for
identifying rare cell types or transition states. Thus, defining the
appropriate granularity and assigning identities to the cells in each
of the clusters generated, a process known as annotation, are both
crucial steps in scRNA-seq data analysis. Here, we focus on the sec-
ond of these steps. A straightforward approach for cluster annota-
tion consists of the computation of differentially expressed genes
(DEGs), or unbiased markers, that define the identity of each clus-
ter. These are subsequently overlapped with specific marker-gene
lists for the cell types expected in the dataset [19]. Alternatively,
unbiased markers can be used as input for statistical tests or bioin-

formatic analysis tools, many of them originally developed to
ascribe genotype-phenotype relations in bulk RNA-Seq datasets.
The most widely used of these tools include over-representation
analysis (ORA) and gene set enrichment analysis (GSEA), as well
as AUCell, PROGENy and DoRothEA [20,21].

The task of cell type annotation is not trivial: multiple tools
have been developed to automatically annotate single cells from
their mRNA expression profiles. A reference cell type information
is needed to label a query gene expression profile with its corre-
spondent cell. First, marker genes related to cell types can be easily
exploited. Lists of marker genes can be independently built by
researchers or gathered from databases and ontologies. On the
other hand, gene expression profiles of a reference dataset can be
directly used for the annotation of a query. In particular, these tools
have been designed either to annotate entire clusters or, to avoid
clustering biases, to classify individual cells (reviewed in Wang
et.al. [22]). Moreover, important characteristics of a tool for auto-
mated cell type annotation include: the capability to assemble
multiple reference datasets to smooth batch effects; the possibility
to classify cell types according to a hierarchical structure which
can be given as input or learned from the data; the computation
of a score of similarity between reference and query which can
help identifying multiple cell types being harbored by the same
cell; the ability of classifying cells as ‘‘unassigned” or ‘‘unknown”
when they have an identity not represented in the reference.
Beside such functionalities, three main methodological approaches
can be identified (Table 1). The first approach relies on information
from publicly available databases and ontologies describing cell
type-specific markers (Fig. 1A). A second set of methods uses
labeled scRNA-seq datasets as input for cell type identification,
finding the best correlation between the reference and query data-
sets (Fig. 1B). Finally, a number of tools use a third alternative:
supervised learning, which involves the training of a classifier with
a labeled reference (Fig. 1C). Thereafter, the classifier is capable of
determining cell types in unlabeled datasets. These methods, and
the informatic tools employing them, are discussed in further
detail below, with particular focus on their strengths and
limitations.

2.1. Cluster annotation with marker gene databases

The widespread adoption of diverse scRNA-seq platforms has
driven a rapid increase in the number of transcriptomic datasets
published over the last years. Thousands of scRNA-seq datasets
are now publicly available, with studies aiming not only to reveal
the cellular heterogeneity of diverse tissues and organisms, but
also to logically and accurately classify cells (Table 2) [47–49]. To
unify results and organize information about cell types and states,
thousands of publications have been manually curated and avail-
able datasets have been systematically re-analyzed, with results
deposited in platforms such as CellMarker [50] and PanglaoDB
[51]. In CellMarker, the cataloguing of manually-curated human
and mouse cell type markers has allowed 13,605 genes to be
mapped to 467 human cell types, and 9148 genes to 389 mouse
cell types. For these analyses, gene-expression markers were gath-
ered from over a thousand single-cell sequencing publications
retrieved by specific PubMed queries, and collected from hand-
books or company databases, such as those of BD biosciences and
R&D Systems. From these datasets, CellMarker categorized cell
types according to their tissue of origin, then hierarchically
grouped them by localization, morphology, and functionality. Pan-
glaoDB, is a cell type atlas in which information on gene expression
and its relation to cell types is collected. To build PanglaoDB, an
internal cell type marker database was assembled by automated
abstract mining, followed by manual curation of the literature.
Currently, PanglaoDB comprises 6631 marker genes mapping to
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Table 1

Tools for automated cell type identification.

Marker
genes

Reference
dataset

Tool name Language Computational
approach

Unassigned Multiple
reference

Hierarchical
classification

Additional features Ref

Marker gene
database-
based

� scCATCH R Scoring system – [23]
� SCSA Python Scoring system – [24]
� SCINA R Bimodal distribution

fitting to marker genes
U – [25]

� CellAssign R Probabilistic Bayesian
model

U – [26]

Correlation-
based

� scmap-
cluster

R, web
app

Cosine, Spearman,
Pearson

U U [27]

� scmap-cell R, web
app

Cosine distance based
kNN

U U [27]

� SingleR R Spearman score U Harmonization of the
labels allows for
multiple reference
datasets.

[28]

� CHETAH R, Shiny
app

Spearman + confidence U U [29]

� scMatch Python Spearman, Pearson score U Cell lineage is added as
lower level of
classification.

[30]

� ClustifyR R Spearman, Pearson,
Kendall, cosine

U Implements a
consensus correlation
score.

[31]

� CIPR R, Shiny
app

Dot product, Spearman,
Pearson

score Dot product implicitly
involves feature
selection.

[32]

Supervised
classification-
based

� CaSTLe R XGBoost classifier U [33]
� Moana Python kNN-smoothing + SVM [34]
� LAmbDA Python Multiple ML

techniques
U Training on multiple

datasets to create a
shared representation
of the labels to smooth
batch effects

[35]

� superCT Web app Artificial Neural
Network

U Classifier trained on
MCA with the
possibility to add user
defined datasets

[36]

� SingleCellNet R Random Forest score Similarity scores allow
to find transition states
and multiple identities
in the same cell.

[37]

� Garnett R Elastic net regression U U U Classification can be
done using open
chromatin information
derived from scATAC-
seq

[38]

� scPred R SVM U Allows to train
different classifiers for
defined labels

[39]

� ACTINN Python Artificial Neural
Network

Robust against batch
effects induced by
sequencing
technologies

[40]

� OnClass Python kNN and Bilinear
Neural Network

U U U Use of a CellOntology to
impute labels not
present in the training
data.

[41]

� scClassify R, Shiny
app

Weighted kNN
classifier

U U U Hierarchical cell type
tree as reference. It
combines six similarity
matrices with five
feature selection
methods.

[42]

Others � scANVI Python kNN classifier [43]
� Capybara R Quadratic

programming
score Cell engineering-

oriented
[44]

� scID R Fisher’s Linear
Discriminant Analysis

U [45]

� scNym Python Adversarial Neural
Network

U U [46]
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155 cell types. Similarly, CancerSEA provides markers, particularly
protein-coding and long-non-coding transcripts, for 14 relevant
functional cell states in cancer, including proliferative, invasive,
and stemness states [52]. Altogether, these databases and online
repositories offer an ample and ready-to-use source of cell type
to marker gene relations derived from scRNA-seq experiments.

Tools that have been natively developed to use the databases
described previously for cell type inference include scCATCH [23]
and SCSA [22]. In both cases, reference lists of markers were con-
structed by merging information from several sources. To use
scCATCH, a tissue-specific cell taxonomy reference database
known as CellMatch was assembled. Within it, markers were uni-

fied from CellMarker, the Mouse Cell Atlas project, CancerSEA, and
the CD Marker Handbook. SCSA uses a collection of markers that
were produced by merging CellMarker and CancerSEA. Addition-
ally, SCSA allows users to add custom reference markers. Both
scCATCH and SCSA calculate marker genes for the inputted clus-
ters, and a scoring system subsequently assigns a cell type to each
cluster. Additionally, SCSA provides an automatic GO term enrich-
ment option, thereby adding information on the biological func-
tions of the cells within each cluster.

As well as the tools above, more sophisticated statistical
approaches have been used to transfer prior knowledge when
trusted reference cell type markers are available, by performing a

Fig 1. Approaches for cell type annotation of scRNA-seq datasets. scRNA-seq datasets can be automatically annotated by tools implementing one of three approaches:
annotation by marker gene databases; correlation-based methods; and annotation by supervised classification. The task of annotating a query scRNA-seq dataset consists of
assigning a cell type identity to each one of the query single cells, or to a group of cells at once i.e. an unbiasedly calculated cluster. (A)Marker gene database-based annotation
takes advantage of cell type atlases. Literature- and scRNA-seq analysis-derived markers have been assembled into reference cell type hierarchies and marker lists. In this
approach, basic scoring systems are used to ascribe cell types at the cluster level in the query dataset. (B) Correlation-based methods make use of multiple correlation
measures to compare gene expression profiles between a reference and a query dataset, at either single-cell or cluster level, by the use of centroids (pseudo-cells obtained by
averaging the single-cell gene expression level of an entire cluster). Some of these tools assemble a reference of cell type gene-expression profiles from an ensemble of
published studies and bulk RNA data repositories. The annotation step in this approach consists of finding the reference cell type that best correlates to the query cell or
cluster, and every tool uses multiple steps for accurately finding the best match. (C) Annotation by supervised classification uses machine learning techniques for training a
classifier on reference labeled scRNA-seq datasets. The classifier is subsequently applied to the query. Supervised learning is a powerful tool for building a model distribution
of training labels as a function of features. Machine learning techniques offer a variety of alternatives in the training step and allow for hierarchical classification, which
permits a more biologically-relevant identification of cell types.

Table 2

Publicly available repositories and datasets used by automated annotation tools.

Data type Species Info Tissues/cell types Ref

Human Primary Cell Atlas Microarray Human Cell type profiles Cell lines, tissues, primary cells [53]
Blueprint Bulk RNAseq Human Cell type profiles Cell lines, tissues, primary cells [54]
FANTOM5 Bulk RNAseq Human, Mouse, rat, dog and chicken Cell type profiles 15 cell types [55]
Encode Bulk RNAseq Human, Mouse, Fly and Worm Cell type profiles Cell lines, tissues, primary cells [56]
HCA Single cell RNAseq Human Multi-organ datasets 33 organs [49]
MCA Single cell RNAseq Mouse Multi-organ dataset 98 major cell types [48]
Tabula Muris Single cell RNAseq Mouse Multi-organ datasets 20 organs and tissues [47]
Allen Brain Atlas Single nuclei RNAseq Human and Mouse Brain datasets 69 neuronal cell types [57]
CellMaker Marker genes Human and Mouse Marker Database 467 (human), 389 (mouse) [50]
PanglaoDB Marker genes Human Marker Database 155 cell types [51]
CancerSEA Marker genes Human cancer Marker Database 14 cancer functional states [52]
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probabilistic assignment of the reference cell types. These include
SCINA [25], which operates at the cluster level by fitting a bimodal
distribution to marker genes; and CellAssign, which works at the
single-cell level [26] using a Bayesian probabilistic model.

2.2. Correlation-based annotation

Correlation is the most straightforward statistical method for
automatic comparison of gene expression data: it can easily use
a reference dataset to reveal information about an unlabeled data-
set. Moreover, correlating the expression levels of a set of genes, or
of an entire transcriptomic profile, is a more refined way to find
similarities between datasets than simply scoring the presence of
marker genes in clusters. By combining the expression level of each
gene with correlation methods, it is possible to evaluate both linear
and non-linear interactions. Different strategies employing corre-
lation have already been implemented in a variety of tools. These
tools perform two main types of comparisons: either single cell-
to-reference or cluster-to-reference. CIPR [32] and ClustifyR [31],
for instance, employ a cluster-to-reference strategy. In particular,
these tools cross-correlate unlabeled clusters to a reference of
annotated clusters, with cell type labels assigned according to
the best-correlating reference cell type. CIPR and ClustifyR repre-
sent clusters as centroids. Each centroid is a pseudo-cell whose
expression level for each gene equals its averaged expression level
in all cells of that cluster. After this step, both tools implement
Spearman (default in ClustifyR) and Pearson correlation coeffi-
cients to determine the identity of each pseudo-cell (or cluster)
in the query, with ClustifyR also integrating Kendall correlation
and Cosine similarity, plus a consensus correlation score. In con-
trast to ClustifyR, CIPR recommends calculating the dot product
of the logarithm-transformed fold change for each cluster, which
implicitly involves feature selection.

In contrast, tools such as scmap [27], SingleR [28], and scMatch
[30] correlate each cell of the query dataset to a reference collec-
tion of cell types or annotated clusters. SingleR and scMatch func-
tion in a similar way, as both use a collection of bulk datasets
generated from human single cell types (Table 2). In particular, Sin-
gleR uses reference expression data from Blueprint [54], Encode
[56], and the Human Primary Cell Atlas [53], while scMatch also
uses FANTOM5 [58] and UCSC Xena Cancer Browser (https://
xenabrowser.net) data, thereby also enabling the classification of
cancer-related datasets. Moreover, since no assumptions can be
made on the distribution of gene expression, both tools recom-
mend the non-parametric Spearman rank correlation. To account
for potential redundancies in the collection of bulk references, both
SingleR and scMatch have an initial step for finding the top corre-
lated cell types, and subsequent steps for refining these associa-
tions. Beyond this, the annotation strategy in scMatch groups
cells by cell lineage or other ontological terms at a more general
level than cell type. In contrast, SingleR, which was first published
using only bulk references, has recently been updated to be used
with single-cell references, and now incorporates a number of
novel functionalities. For instance, there is now an option for using
multiple reference datasets through label harmonization. Another
tool for automated annotation, scmap, offers the scmap-cluster
and scmap-cell options to annotate cells either to a reference clus-
ter or to a reference cell. Thereby, it is possible to annotate single
cells without requiring the user to define clusters a priori. To
achieve this, scmap-cluster computes the similarity between each
cell and the centroid of each reference cluster, while scmap-cell
uses a fast-approximate k-nearest-neighbor search through pro-
duct quantization, with an Euclidean distance algorithm adapted
to incorporate cosine distance.

One requirement for the use of correlation methods, whether
they map individual cells or entire clusters to a reference, is the

selection of features. Feature selection consists of identifying and
removing as many irrelevant or redundant features (genes in this
context) from the data. Removing redundant genes is especially
important when comparing datasets sequenced by different tech-
nologies, as the use of distinct sequencing parameters, i.e. varia-
tions in sequencing depth, may result in a different number of
genes being detected in each cell. Of note, Kiselev and colleagues
have reported that intra-dataset annotation performs poorly when
unbiased gene selection methods such as highly variable genes
(HVGs) or M3Drop are used instead of other feature-selection
methods [59]. In their study, the best results were obtained by
using random genes as features. In contrast, SingleR and ClustifyR
utilize HVGs and DEGs, respectively, as default features. Feature-
selection strategies were systematically tested during the develop-
ment of CIPR and scmap. In CIPR, the performance of different cor-
relation methods was evaluated when used either on all genes, or
on a subset. Results suggested that methods using dot product
operations on DEGs are best able to discriminate similar cell types,
as they account for both down- and up-regulated genes. A distinct
alternative was implemented in CHETAH [29], the only correlation-
based tool implementing a method for hierarchical classification
(see the next section). In CHETAH, candidate cells are compared to
reference subsets in multiple rounds, with a different set of genes
used to measure the similarity in each round. The best results were
reported when the 200 genes with the largest absolute fold-change
between a candidate cell and the averages of the sub-reference
were used.

2.3. Annotation by supervised classification

Automatic cell type annotation methods attempt to identify
similarities between scRNA-seq datasets, overcoming the intrinsic
noise and variability of the data. Indeed, multiple confounding fac-
tors underlie the variability found across scRNA-seq datasets.
Prominent drivers of variability include the sequencing platform
used, the depth of sequencing chosen for the experiment, and the
method of sample preparation. Such characteristic noise and the
multidimensionality of scRNA-seq data have made machine-
learning methods an outstanding resource for fulfilling a variety
of tasks in analysis pipelines, including dimensionality-reduction
operations [60,61]. Supervised classification, i.e. the transferring
of labels from labeled to unlabeled datasets, is a classic paradigm
in machine learning, for which a wide range of techniques have
been developed [62]. In the field of machine learning, the term ‘su-
pervised learning’ is used to refer to the building of a model distri-
bution of labels (cell types) in terms of a set of features (genes)
which is trained on ground truth data (a previously annotated
dataset). Thereafter, trained models are used to assign labels to
instances of unlabeled datasets, according to their relative features.
For automatic cell type annotation in scRNA-seq datasets, tools
have already been developed which use supervised classification:
here we highlight the main applications for scRNA-seq datasets.

Among the first classifiers for cell populations, CellNet was
developed based on the Random Forest method [63]. Similarly,
the same research group recently proposed a tool for single-cell
classification named SingleCellNet [37]. Random Forest techniques
are derived from decision trees, a class of logic-based algorithms
[64], and have already proven useful in handling similarities within
a scRNA-seq dataset [65]. By providing a quantitative score for the
similarity between each cell class and each cell in the query data-
set, SingleCellNet makes it possible to find multiple cell types asso-
ciated with a single cell or with a group of cells: an extremely
valuable functionality in the frame of cell type engineering, as cells
in transition states can be identified.

In addition to Random Forest techniques, the k-nearest-
neighbor (kNN) instance-based learning algorithm is also used
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for automatic cell type classification. This method is based on the
principle that, in their feature-based representation, instances of
the same class localize close to each other. Thus, kNN classifies cell
type by representing labeled and unlabeled instances together in
the same dimensions: this assigns unlabeled instances to the
most-represented class in the neighborhood. OnClass is an exam-
ple of a tool that takes advantage of the power of kNN classifiers.
OnClass is able to impute labels not present in the training dataset
by creating a low dimensional representation of the training set
[41]. In this representation, a self-implemented CellOntology
enables storage of information about numerous labels, even if they
are unseen in the training set. Then, novel label imputation is car-
ried out using a bilinear neural network. Similarly, a weighted kNN
classification lies at the core of scClassify [42], a tool with the
capacity to derive a hierarchical reference representation from
multiple datasets. Thereafter, at each node of the reference cell
type tree, scClassify trains 30 classifiers obtained by combining
six similarity metrics with five feature selections.

Artificial neural networks (ANNs) are the basis for another class
of supervised classifiers commonly referred to as perceptron-
based. The great capacity of these techniques for solving non-
linear relations between classes and features, together with
advances in computation speed over recent years, has made
ANN-based methods popular for tackling numerous tasks in the
biomedical field [66,67]. Examples of tools engaging ANNs for
single-cell supervised classification are LAmbDA, SuperCT, and
ACTINN [35,36,40]. LAmbDA is a framework that aims to perform
multiple tasks on scRNA-seq data. ANNs perform the classification,
interpreted as a transfer learning problem. By conducting the ANN
training step on raw data from multiple datasets, LAmbDA creates
a generalized representation of shared labels while correcting for
potential batch effects. Another tool, SuperCT, was designed as a
framework in which a supervised classifier is trained on all data-
sets within the Mouse Cell Atlas (MCA) [48], with the user able
to expand this reference by submitting new datasets. In tests using
the Tabula Muris Atlas as a training dataset [47], ACTINN was
highly accurate in classifying strictly related cellular subtypes,
and was robust against batch effects arising from the use of differ-
ent sequencing techniques.

As with ANNs, Support Vector Machines (SVMs) have also been
used in the context of scRNA-seq data analysis. SVMs allow multi-
collinearity and non-linear relationships to be harnessed within
scRNA-seq data. Moana [34] and scPred [39] are two examples of
tools which apply SVM-based classifiers on PCA-transformed gene
expression matrices. Thereby, these tools prevent single genes
from having an excessive impact on cell classification. More partic-
ularly, scPred uses SVMs with radial kernels as a standard, but
allows the user to train other prediction models on specific labels
as well (available in the R package caret [68]). Moana engages a
hierarchical classification by recursively clustering and training a
classifier over multiple iterations. Thereafter, Moana uses kNN to
smooth the expression data minimally before training a SVM with
a linear kernel to classify data in clusters in the two-PC dimension
space. This operation is conducted for each cluster, until all labels
in the reference dataset have been separated. Using this strategy
for hierarchical classification allows Moana to maximize the num-
ber of cells it can analyze while minimizing the computation time
required for the training step. The hierarchical classification
approach is utilized not only for its efficiency in terms of computa-
tion time, but mostly because the classification it performs resem-
bles the structured identity of cell types in tissues more closely. In
fact, hierarchies between labels can be learned by the reference
data (as in CHETAH (previous section), OnClass, and scClassify) or
directly given as input by the user. The latter strategy was imple-
mented in Garnett [38], a tool that allows cell type assignment
according to a tree of cell types. Garnett creates a hierarchical

model from the reference dataset by using cell type markers
defined by the user. On these models, the software then trains an
elastic net classifier. Notably, Garnett has been adapted to also
be capable of classifying cell types according to their ‘‘gene activity
score” as obtained from scATAC-seq data.

To harmonize cell counts between datasets while classifying
unlabeled data with information from a labeled reference, semi-
supervised learning techniques have also been implemented in
the frame of scRNA-seq data analysis [43,46]. Furthermore, Capy-
bara [44] uses an unsupervised approach based on quadratic pro-
gramming to score cells with a measure of cell identity which
represents a linear combination of the cell types in the reference.
Capybara can identify cells harboring characteristics of multiple
cell types. The cell type classification task is performed in this tool
by a statistical framework that makes it possible to find transition
states between labels in the reference.

The power of scRNA-seq analysis tools lies primarily on their
capacity to represent as many genes as possible in an unbiased
manner. As computation tasks are presently feasible even when
working with standard scRNA-seq dataset sizes, feature selection
is not strictly required for supervised classification. Nonetheless,
outliers and redundant features are detrimental to model training
and classification in terms of computation speed and accuracy.
Thus, feature selection and processing are key to enhancing the
performance of supervised classification algorithms. Among the
tools described in this section, many perform an initial data-
processing step, while others select features. SingleCellNet, for
example, selects features by pair transformation, keeping and bina-
rizing only the most discriminant pairs before the training. CaSTLe
also selects features, by using univariate methods such as selection
by mean expression, mutual information, and correlation between
genes, before splitting data into four bins according to expression
levels [33]. ACTINN conducts a simple feature cleansing by consid-
ering as outlier genes whose mean expression level and standard
deviation lie within the highest or lowest percentile. Instead of
selecting features, Moana performs an initial kNN-smoothing step
to remove unwanted noise. It is important to note that one main
assumption of Moana (as well as superCT and ACTINN) is that all
cell types existing in the query need to be present in the reference,
to prevent that unseen cell types will be associated to the wrong
labels. On the other hand, other tools implement a strategy to clas-
sify cells as ‘‘unassigned” or ‘‘unknown”, frequently by defining a
cut off score for the annotation to be trusted. The ability of classify
correctly the unseen cell types is key for these methods and it is
benchmarked in scClassify, CHETAH, scPred and Garnett.

Reports suggest that all tools exploiting supervised clustering
are reliable, efficient, and accurate. However, these conclusions
might be the consequence of classification tests being relatively
simple: classifying peripheral blood mononuclear cells or pancre-
atic cell types is relatively straightforward, given their high level
of heterogeneity and the marked differences in the transcriptional
profiles of the cells within each dataset. One task likely to be signif-
icantly more challenging is the identification of cell subtypes, for
example within the neuronal classes, as only few genes may be
crucial for their discrimination [57]. In case studies where the mar-
ker genes to be used are clearly defined, approaches like Garnett,
SCINA, and CellAssign may outperform brute-force approaches.
Similarly, if datasets with meaningful features and sufficient label
representation are available, supervised learning methods might
offer a powerful and flexible alternative for their analysis.

3. Summary and outlook

In the present review, we summarize the three main
approaches used for automated cell type annotation on scRNA-
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seq data. A first category of tools relies on a set of trusted cell type-
specific markers to ascribe the cell identity in the query. Such
markers can be both database-derived or manually-curated lists.
In the first case, the reference cell types we can use in the annota-
tion is exhaustive, but the annotation can be uncertain if the query
is not clean. On the other hand, manually-curated lists are usually
limited in terms of cell type coverage, but allow for the use of
sophisticated statistical approaches. Correlation-based methods
require annotated bulk or single-cell RNA datasets as reference.
These methods easily allowmultiple references and large consortia
data to be merged, making the annotation as comprehensive as
possible. Ultimately, supervised classification methods represent
a valid alternative when a meaningful reference dataset is available
for the training step, being able to overcome characteristic scRNA-
seq noise and batch effects given by different sequencing technolo-
gies. Automated cell type annotation tools have been assessed in a
broad range of tissues, sample conditions and applications
(Table 3). Notably, a benchmarking of supervised classification-
based methods for automatic cell annotation was recently con-
ducted by Abdelaal and colleagues [69], showing that each method
possesses specific advantages over the others, and very good per-
formances by using SVM with rejection option. Another bench-
mark study, comparing different classes of tools, shows that
combining multiple tools is highly encouraged for improving the
accuracy [70].

In the future, integrating the crucial role played by post-
transcriptional regulatory mechanisms and epigenetic modifica-
tions on the genome with the in-depth knowledge currently being
generated on the transcriptional profiles of a myriad of cell types
across species and contexts will bring a better understanding of
cellular identity. While the drop in the cost of sequencing tech-
nologies has allowed scRNA-seq technologies to become widely
adopted, the implementation of strategies for the simultaneous
extraction of transcriptomic, proteomic, and genomic regulatory
information at the single-cell level will progressively allow for
more refined cellular classifications [71–77]. The field will defi-
nitely benefit from a variety of computational tools for the efficient

collection, standardization, and curation of discoveries related to
cellular and molecular functions. Even in the absence of a final con-
sensus in terms of what ultimately is entailed by the concept of
cellular identity, sufficiently accurate approximations are expected
to enable important advances in the field of cell and gene therapy.
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